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Al~tract--The volume-averaged form of the linear momentum conservation equations for two- 
phase flow is examined to clarify momentum interaction effects between phases. The case of an 
accelerating sphere of varying radius in an accelerating flutd is used to derive the form of the 
interphase force terms. The analysis is extended to assembhes of noninteracting spheres and an 
interphase force term related to the spatial gradient of phase volume fraction is seen to arise. For 
the case of bubbly flow, two real characteristics are obtained for dispersed phase volume fractions 
less than about 0.25. If the term involving the spatial gradient of the phase volume fractton ts 
neglected, then the characteristics are always complex for veloclty differences between the phases. 
The interphasc force model is applied to predict experiments on vmd propagation in bubbly flows. 
There are no adjustable constants in the model. The experimental data were obtained in our laboratory 
umng cross correlation of signals from a pair of ~amrna densitometers. The predictions are in excellent 
agreement with the data. In addition, the predictions are compared with data from several other 
laboratories, taken over different sets of flow conditions. The predictions are again in close agreement 
with the data. 

1. INTRODUCTION 

One of the main approaches to two-phase flow modelling has been to average (in time, 
space, over an ensemble, or in some combination of these) the original local instantaneous 
conservation equations, e.g. Agee et al. (1978), Banerjee & Chan (1980), Boure (1975), 
Delhaye & Achard (1978), Drew (1983), Hughes et al. (1976), Ishii (1975), Lyczkowski 
(1978), Nigmatulin (1978), Panton (1968), Vernier & Delhaye (1968), Yadigaroglu & Lahey 
(1976). In general, a set of averaged conservation equations can be written for each field 
which may be thought of as it clearly identifiable portion of a phase. For example, annular 
flow may be modelled by using tfaree fields, one for the droplets, one for the liquid film, 
and one for the gas core. Selection of the fields depends to some extent on the modeller, 
but in all cases should be consistent with the physics of the flow situation. 

Averaging makes the mathematical aspects of the model much simpler, but information 
regarding local gradients at interfaces and walls are lost in the process. Consequently closure 
relationships, sometimes called "constitutive equations", have to be supplied for interfacial 
and wall transfer of heat, mass, and momentum. In addition, averaging also eliminates 
information about intraphase distributions of the dependent variables leading to a need for 
distribution coefficients that relate the product of averages to the average of products. 

The form of closure relationships for models with two or more fields may have important 
consequences on the mathematical structure of the problem. In particular, subtle aspects 
of momentum interactions between fields play an important role in determining stability. 
Drew (1983) and several others like Ramshaw & Trapp (1978) have shown that the simplest 
multifield models proposed, which account for interracial forces through an algebraic drag 
correlation, lead to high-wavenumber phenomena that are not physical. 

Considerable work has been done to resolve this problem. Stuhmiller (1977) and 
Banerjee & Chan (1980) have analyzed pressure interactions between the phases and shown 
that careful consideration of these may lead to more realistic models. Drew et al. (1979) 
have analyzed one important momentum interaction effect, that due to virtual mass, from 
the viewpoint of material frame indifference. While Drew et al. (1979) and Drew & Lahey 
(1979) have discussed the closure relationships for the linear momentum equation from a 
continuum-mechanical viewpoint, it is still important to understand the form of the interfield 
momentum interactions by studying the solution for an actual physical system. To this end, 
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we have selected a problem whlch may serve to clarify the sztuanon, vlz. the forces on an 
accelerating sphere in an accelerating fluid, and then extended this to an assembly of 
noninteracting spheres. The mare objective of this part of the work is to illustrate the form 
of the closure relationships that arise in the linear momentum equation. 

The results from the model for the interphase forces in bubbly flow are then compared 
to experiments on void propagation done in our laboratories and by Bermer (1981). Void 
fraction wave modelling was also investigated by Mercadier (198 l) using pipes of hydraulm 
diameter "-~38 mm and liqmd superficial velocities ranging from 0 to 1 m/s. These exper- 
imental results are in close agreement with ours but the models are different m several 
respects, e.g. Mercadier accounted for the viscous drag but neglected phasic pressure dif- 
ferences. Our model includes pressure difference effects while neglecting viscous drag. The 
form used for the virtual mass forces is also different. We shall see that our model ~s m 
good agreement with Mercadier's data tn addition to the other data. 

Micaelli (1982) investigated a somewhat different experimental range using a stochastic 
approach and taking into account viscous drag and distributmn effect. This approach ~s 
different from the one presented in our paper. 

2 THEORETICAL ASPECTS 

2.1 T h e  l inear  m o m e n t u m  equa t ion  

The linear momentum equation for field k has been derived previously, see for example 
Banerjee & Chart (1980). We briefly recapitulate the form to be used later in the paper. 

- - a k  <pkUk) + -- ak < p k u { )  + - -  a k  <p~>- -- ak  (r=~) 
ot ~z ~z ~z 

= a k  ( p k F k )  - (mkUk) ,  - (n~.nkpk), + (n,.(nk.~k)), + (nkw.f,),~ , [1] 

where 

i 

1 fv  /.kdv, = . 

1 f ds 
= , . 

a k is the volume fraction of field k in volume V, nk IS the outward drawn normal on the 
surface of field k, n~ is the unit vector in the z direction, a, is the interracial area of field 
k, and a , .  the area of contact between field k and the wall (see also figure l in which the 
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Figure I Schemauc of two-phase flow dehnmg the symbols 
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symbols are defined). The other variables are Pk, the density of field k; uk, the velocity in 
the z direction; Pk, the pressure; ~k, the shear stress tensor; Fk, the body force; and rhk 
the mass transfer out of the field. 

The pressure term on the right-hand side can be broken into a part that varies over 
the interface and parts that do not in the following way: 

with 

p e  = (pk> + APe + AP;~, 

V 
Ape = al (Pe)~ (Pk) ,  

which does not vary over a~ in V, and 

V 
AP b = p ~  - ~ <pe>i • 

[2] 

fvk(~t) ~ A dV a fVk fo • = ~ n ,  • A d V  + 
aZ (~t) t(~t) 

from which it follows that 

we have 

:v,(~,)V • A dV = fo n ~ . A d S - ~  n, .A  clS 
,(~t) kz(,t) 

+ : o  A d S  ka(~t) n :  • 

where the symbols are defined in figure 1, and A is any vector field. 
From the definition of a volume integral 

- -  - -  A, dS da ' ,  
~Z k(:.t) aZ  " : - Z I 2  t(:') 

where A, = n, • A. Noting that 

+ k,~,-) 

d .f b(~,) do" "o~,) f(r)dr = b'(o')f[b(o')] - a'(o')f[a(o')], 

n , . B d V =  n : . B d S -  n : . B  dS, 
k2(Lt) ,dLt) 

n k . A  dS + f~ A d S  k~(&t)nkw * 

If nkw is perpendicular to the direction of motion, it follows immediately that 

nk • ( n , p k ) d s  = - [ < t O  + A P e ]  a a ~  
i aZ 

+ (nk  • n ,  • AP 'e>I  

from the definition of (Pk) and Ape. 
The same analysis could be performed on the term involving ~k on the right-hand side 

To proceed, we recapitulate a form of Gauss' theorem particular to figure 1 (see also Delhaye 
& Achard (1978) for derivation). Gauss' theorem applied to volume Vk(z,t) is 
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of [1], bu t i t l s  sufficient for our purpose to consider the pressure term. The hnearmomentum 
equation then becomes 

a a a<pk> a 
-- a k  (pku~> + -- ak <pku~> + a k  - -  a k  <T~k> 
a t  az az az 

ao. k 
= Apk,- + (akpkFk>- <rhku,~>, + (nk "÷,>, - <nk .n, Ap'k,>, -+- (nk,, .¢,>,, • [3] 

az 

Several interesting aspects are apparent in this equation. For example, (p,> is the average 
pressure in fidd k and may vary from fldd to fldd, e.g. due to gravitational and surface 
tension effects in stratified flows. Apja is the difference between the average pressure in field 
k and the average pressure at the interface within field k, and may be significant in many 
situations, e.g. again in stratified flows due to gravitational effects or in dispersed flows 
where the average pressure at the interface is different from the average pressure in the 
phase. Another important term is (nk • n~ Ap~>~ which gives the force per unit volume in 
the z direction due to pressure variations over a ,  For accelerating flows, this is significant 
even if the phases are considered to be inviscid. For nonaccelerating viscous flow, this term 
leads to the form drag. On the other hand, for stratified flow with no waves, this term 
vanishes since there are no pressure variations on the interface. 

We will now proceed to calculate the form of the terms on the right-hand side of [3] 
for the case of an accelerating sphere of varying radius in an accelerating incompressible 
inviscid fluid. We will assume no interfidd mass transfer and no wall effects to simplify 
matters. 

Z2 Forces on an accelerating sphere in an accelerating fluid 
Consider the forces acting on an accelerating sphere of varying radius in an accelerating 

inviscid fluid. The sphere may be thought of as an expanding or collapsing gas bubble; all 
variables associated with the sphere will be subscripted with G, the variables associated 
with the surrounding fluid will be subscripted with L.  

The following discussion will clarify the methodology. We will then extend the analysis 
to an assembly of spheres and examine the effect of spatial gradients in phase volume 
fractions. 

To simplify the notation we will drop the averaging signs in the following with the 
understanding that the averaging volume is large compared to the volume of the sphere. 

Starting with a simple case to illustrate the main effects, consider a fixed sphere (i.e. 
u a = 0) in a large body of accelerating fluid. The potential describing the flow is given 
by Milne-Thompson (1968) as 

= u L r + cos 0. [4] 

R,  uL, and (r, 0) are, respectively, the radius of the sphere, the fluid velocity far from the 
sphere, and polar coordinates referred to the center of the sphere. 

The unsteady Bernoulli equation gives the pressure in the flow field and in particular 
at the sphere-fluid interface as 

3 9 
Pu  = Pzo + ~ PL R UL (COS 0 - 1) - ~ PL U~ sin20 . [51 

Pzo is the pressure at the front stagnation point (i.e. at 0 = 0). Using an averaging volume 
that encompasses the sphere, it is straightforward to show that the integrated interracial 
force is 

3 
<nL • n, Ap'~>, = -~ a6 pLUL • [6] 
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In this problem the fluid accelerates uniformly, i.e. there is no spatial velocity gradient. 
Hence in [6], ziL is the derivative of uL with respect to time. 

Consider now the more general ease of an accelerating sphere of variable radius in an 
accelerating inviscid fluid. To simplify matters, let the flow be without circulation. In this 
ease, the force over the sphere can be found by using the Cauchy-Lagrange equation which 
is similar to Bernoulli's equation except for an additional term which arises if the potential 
is referred to a moving frame of reference (see also Yakimov 1971 and Voinov 1973). The 
basis of the following derivation is that the sphere introduces a small perturbation into the 
undisturbed potential for the continuous phase flow field. 

The Cauchy-Lagrange integral in a system moving with velocity u6, in which the 
motion of the fluid is described by the potential ~b, has the form 

oqb 1 
T t  + 2 ( v ¢ ) 2  - u a .  (vd#) + p- + u = f ( t ) .  [71 p 

Omitting the potential of external forces U, the force exerted by the flow on the sphere, in 
the z direction, is 

) F,  = p + ~ (V~b) 2 - u ~ .  (V~b) nk • n, dS .  [8] 

Consider now some arbitrary potential flow ~0 devoid of singularities. ~o can be written 
in terms of its infinite Taylor's expansion around y, = q:  

e~ 

d?o = ff-~ 1 anc~-----------&-° x ,  . . . x~ x i  = yj  - qj, i, j ,  ..., k = 1 , 2 , 3 .  
n=o n ! Oy, "**ayk 

The y, are the absolute Cartesian coordinates, the x, are Cartesian coordinates relative to 
the system centered on (q,(t)). ~bo satisfies continuity, therefore each term of this series is 
a harmonic function. 

We perturb the flow field by introducing an infinitesimal sphere at ql(t)  moving with 
velocity u6 = q,. 

Neglecting the far boundaries, ~b must have singularities only within the sphere and 
tend to ~b0 at infinity. The boundary condition at R is 

l u ,x, 
aS - -R + R "  

The unique harmonic function satisfying these conditions is 

R2 R u ~ , x , R  3 ~ .  1 n R 2"+1 O"d?o 
= ~b0 + ,. ,  - -  - -  - -  x, ... Xk, [9] 

r 2r 3 n=O n In + 1 r 2"+t Oyd"Oyk 

where 

1.2 ~__ X t X  t . 

This equation holds only if the distance to the flow boundary is large compared to the size 
of the sphere. For example, introducing a sphere in a still body of liquid with a planar 
wall, the potential would be formed with the image locations to the wall discontinuity. 

The first term of the integral [8] can be evaluated exactly by noticing that terms of 
order n > 1 are orthogonal to x,:  

f ~b 4~rR3D6~Lz 2~r D~ 
- - n k n ~  dS -- + (R3(uga - uGz)) [10a] 
at 3 Dt T " ~  " 
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The material derivative 

Dk ~ 
- -  + u k - - ,  

Dt ~t oz 

Dropping terms of order R s and above gives the two last terms in [8] as 

1 l ( ~ 7 6 )  2 - u ~  • ( ~ ' 4 , )  n~ • n~ dS = - 2~rR a ((uc - uL).  ~ )  UL~. [10b] 

Combining [10a] and [10b] and adding the buoyancy force arising from the potential U 
gaves the force on a sphere small compared to the flow field 

F = pLCtG ~ Dt  Dt  ] + ~ ( u z  - u G ) ~  + - ~  g ,  . [ i l l  

According to this derivation, the equation of motion for the sphere is 

aGp G - -  _ 

D aua 

Dt  -- + aapz.  ~ ~ Dt  Dt  I 
I 

3 D a R  DI, UL | 
+ - ~  (U L - U G) Dt  + D----~ - g" [12] 

Note that if ua = 0 and R is constant, then the form of [12] reduces exactly to [6], with 
clearly being given by D L u L / D t .  Note that to the level of our approximation uL is the 

undisturbed velocity of the continuous phase flow field if the sphere were absent. 
The physical significance of the terms in [12] are as follows: 

- -  the first term on the right-hand side is the "virtual mass" force due to relative accel- 
eration between the phases; 

- -  the second term is a force due to radius change; 
- -  the third term is the "virtual buoyancy" which arises out of the pressure gradient in 

the continuous phase, as will be demonstrated later; 
- -  the fourth term is the buoyancy force. 

To further assess the validity of [12], consider the case when the spatial liquid velocity 
gradient is important, e.g. in the case of a sphere placed in the flow field of a source. Then 
the force exerted by the flow field on a fixed sphere can be shown to be an attraction 
towards the source of magnitude (see for example Milne-Thompson 1968): 

F = 4'a'pm2a3 

r ( r 2 - a 2 ) ~  , 

where r is the distance from the sphere center to the source, a the radius of the sphere, 
and m the source strength. If a is small compared to r, which is consistent with our 
assumption for [12], then the far-field liquid vdoeity potential can be approximated to that 
of a source of strength rn, and it is found that the force is 

3 d u z  [ 1 3 ]  
-~ aapLUL dr 

This is exactly what would be obtained from [12] if ua = 0, R is constant, and uL = 
uL(r). Therefore, we conclude that the results of the preceding analysis reduce to the correct 
limits. 
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We will not consider in more detail the last two terms in [12]. To clarify how these 
terms arise, we note that the equation of motion for the continuous phase is 

DLUL aPL [14] 
PL Dt PLg~ -- az 

This equation shows that the buoyancy and virtual buoyancy terms in [12] are in fact the 
pressure gradient of the continuous phase impressed on the sphere. This is consistent with 
the way the momentum equation was derived. Equation [12] indicates that the pressure 
gradient is contained in the intedacial terms when the averaging volume encompasses the 
sphere. Combining [14] and [12] gives the momentum equation for dispersed flows of low 
void fraction: 

D ~ o  apL 
aopo "~ + a~ az 

This equation agrees with Nigmatulin (1979) for dispersed systems with low void fraction 
(when bubble interaction effects may be neglected) though it is derived in a completely 
different way. 

Z3. Forces on an assembly of spheres 
Consider now an assembly of spheres of constant radius for a velocity with mean fluid 

velocity in the z direction, as shown in figure 2. An infinitesimally thick control volume 
cuts the spheres, as shown in the figure. We will assume that the spheres are sufficiently 
far apart that the interactions between them are weak. Also, we will assume that they are 
placed relatively randomly but that there are spatial (and temporal), gradients in phase 
volume fraction. To simplify matters further, we take the average diameter of the spheres 
to be constant. 

The derivation of the averaged-momentum equations is straightforward if it is recog- 
nized that the sum of the interracial pressure forces acting on the segments of the spheres 

0 0 0 
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Figure 2. Schemauc of bubbly flow showing averaging volume and void variation. 
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intersecting the control volume is eqmvalent to the integral of the pressure vananons over 
the surface of a single sphere per unit interfaciai area times the interfaclal area per umt 
volume. The virtual buoyancy is now contained in the pressure grachent terms and the 
momentum conservation equations are, from [3], 

DouG op~ aa~ 1 (Dou~ DLUL 1 
p ~ a o  D----t- + a o  -- & P ~ , ' - -  PL ct~ + a o p r g ~ ,  [16] az Oz 2 ~ Dt  Dt ! 

p l a t  - ~  + aL ~Z -- "--aZ + 2 PL a~  \ Dt  - ~  "] + aLpLg ,  [17] 

Notice the difference between [15] and [16], putting aside the fact that [15] accounts for a 
variable bubble radius. In [15] the averaging volume encompasses the sphere; therefore, m 
general (that is, when the sphere is not crossing the averaging volume boundary), the effect 
of the hqmd net pressure gradient must be contained in the interracial term, and the void 
fraction gradient vanishes. In [16], the effect of the net liquid pressure gradient ts contained 
m the gas pressure gradient, and the void fraction gradient appears naturally from [3]. 

In writing this form of the momentum equations we have assumed that distributmn 
coefficients are 1.0, i.e. products of averages are equal to the average of products. The 
coefficient for the last term on the right-hand side of [16] and [17] is based on there being 
no interactions between the spheres. In general, this coefficient will depend somewhat on 
phase volume fraction. 

To proceed, we need to calculate Apz~ and Apo,, recalling that these are differences 
between the average pressure at the interface and the average pressure within each phase. 
It is a good assumption to put Ap a, = 0 since the average pressure within the spheres will 
be very close to the average interfacial pressure. To obtain Apt,  it is sufficient to find the 
average interfacial pressure, say from [5] or its eqmvalent. For spheres of constant radius, 
the integration yields 

1 
ApL, = - ~ pL(U~ - UL) 2 . [18] 

Together with the mass conservation equations for the dmpersed and continuous phase, the 
momentum conservation equations now form the model we will use for analysis of the 
experimental results. Note that we will use expressions for the virtual mass coefficient and 
Ap~ that assume no interactions between spheres. The virtual mass terms in the model are 
exactly the same as derived by Nigmatulin (1979) for assemblies of spheres. The term 
revolving the spatial gradient of the phase volume fraction has not been used previously, 
to our knowledge. 

2. 4 Characteristics and void propagation 
The momentum and mass conservation equaUons form a quasihnear model with first- 

order derivatives. The viscous terms are usually modelled through "drag" or "friction" 
correlations which are algebraic functions of the dependent variables. These do not affect 
the velocities of propagation of disturbances. There are also transient viscous effects, e.g. 
the Basset force, which involve history integrals. To a first approximation, these terms do 
not affect phase velocities in the linear dispersion relationship. Therefore, it is sufficient for 
our purposes to consider only the derivative terms in the model. Also, for this case p ~ < < 
P t.  The characteristics h are then determined from 

det 

-CL G 
0 
[pLCvM (X - UG) 
+I /2pL(Uo  -- UL )} 
pLaG CvM(Uc - X) 

0 
--£1. L 

{ - - p L C v M  O~ -- UL ) 

-1/2pL (Uo - UL)I 
(ptaL + PL CVM ac) 
(h Ut ) 

?~ - uG 0 

- (~  - u ,  ) O 

0 - 1 = 0 .  

-ApL, t-aL ! 

[19] 
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Here we have left Cru, the virtual mass coefficient, and ~L~ unspecified. C v ~ -  
and ~ = - ¼ PL (uo - u~) ~ for the case of noninteracting spheres. And the 
characteristics for void propagation are given by 

X *  - a L  ± 
2 + 4aGaL I + 2aLa~' 

where 

~ - - U  L 
),* - -  , [ 2 0 ]  

U O -- U L 

A = ~ a ~ : - a o a L  + a o a L  • [21] 

Note that for aL "~ 0.74, A ~ 0. Therefore, the characteristics are wholly real only for 

aL > 0.74 (or a c  < 0.26). 

Thus it would be expected that the coefficients in the interphase force terms would have 
to be changed to maintain real characteristics outside this range of void fraction. This could 
arise due to flow regime transition. Interestingly enough, this flow regime transition (if, 
indeed, a change to complex characteristics signals such a transition) is independent of 
physical properties and only depends on the phase volume fraction for (Po << PL). 

~* is plotted against a o in figure 3. As mentioned previously, these characteristics are 
for void propagation--the phases are assumed incompressible so pressure waves propagate 
infinitely fast. Pressure wave behavior will be the subject of a subsequent paper because 
strongly nonlinear effects enter through the relationship for phase pressure difference, and 
thermal effects have to be considered very carefully. For large amplitude pressure waves, 
the analysis has to be altogether more sophisticated. 

The results in figure 3 are correct to the following level of approximation in distribution 
effects: 

ak<u~> = ak <uk> ~ , [22] 

1 

75 

S 

25. 

0 ! 
o; ; ;s ? 2; o, 

Figure 3. The characteristics k* as a functlon of void fraction for bubbly flows. 
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where 

a k < U k >  
< U k )  - -  - -  

~k 

and the overbar denotes a time or ensemble average (see also Banerjee & Chan 1980) 

3 COMPARISON WITH EXPERIMENTS 

3.1 Experimental equipment 
Experiments were done in the vertical air-water loop shown schematically in figure 

4. The piping in the test section was 38 mm I.D. and the first measurement station was 5 
m from the air inlet, which was a mixing tee. 

In addition to flow rate measurement for each phase, the cross-section averaged void 
fraction was measured at two stations placed 62 mm apart. The void fraction was measured 
with a gamma densitometer, the design of which is discussed by Chan & Banerjee (1981). 
300 mCi Americium sources were used; typical count rates were 30,000 counts/s  with pipe 
full of water, and 50,000 counts/s  with the pipe empty. Gamma beams of the same width 
as the pipe were used to reduce flow regime dependence on the count rate for a particular 
void fraction. Nonetheless, the densitometers were calibrated with Lucite pieces of various 
shapes. The calibration curves are shown in figure 5. The densitometer signals were fed to 
a cross correlator. The real and imaginary part of the cross spectrum, and hence the phase 
lag, was found. The technique is extensively discussed in the papers by Heidrick et al. (1977) 
and will not be considered here. The measuring stations were close enough that the coherence 
between the signals was ,,~1.0 in the range of frequencies of interest. This indicated that 
structures were propagating between the densitometers in a relatively undistorted form. 
Consequently, phase velocities could be calculated from the phase lags as a function of 
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Figure 5 Calibratmn points for the gamma densitometer for different flow regunes simulated 
with Lucite pieces. 

frequency. A typical phase lag vs. frequency plot for the bubbly-slug flow region is shown 
in figure 6 along with the coherence function. Note that the data is centered about the 
higher value of the propagation velocity (if there are two distinct values as suggested by 
the analysis) as this will have a higher coherence. Coherence drops off with propagation 
time between the measuring stations, so the data will tend to be biased towards identification 
of the higher void propagation velocity. 
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Figure 6. Typical coherence and phase spectra. The phase spectrum is linear at low frequency 
indicating that the system is nondispersive. 
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Data were taken m the bubbly-slug, slug, churn, and annular flow regions. We wtll 
only discuss the bubbly-slug flow data in this paper. 

Bernier's (1981) experiments. Bernier (1981) did an extensive series of experiments at 
Caltech under C. Brennen's supervision. The test section was 101.6 mm I.D. and the first 
measuring station was 1 m from the mlet. Cross-section averaged void measurements were 
made by two impedance void meters. They operate on the principle that the bulk electrical 
impedance of the mixture is usually different from the impedance of each constituent The 
technique has been used and discussed by Orbeck (1962) and Olsen (1967) 

Bernier's data cover a range of bubbly flows occurring at low water velocity with 
bubble diameters on the order of 0.5 cm and void fractions ranging from 0 to 25% 

3.2 Predictions of data 
The model proposed in the theorettcal section was applied to our own data and the 

data of Bernier (1981). Our data were taken with 0.1 < cta < 0.15. In these experiments, 
the superficial gas veloctty j a  was kept constant (--~ 0.1 m/s) and the liquid velocity was 
varied. The superficial liquid velocity was 0.0884 < JL < 0.765 m/s. The results for the 
bubbly flow experiments are shown in figure 7. The agreement between the experiments 
and the model is remarkable. 

Bernier's data cover a narrower range of liquid superficial velocities, 0 <__ JL -< 0.318 
m/s,  but a wider range of phase volume fractions. Figure 8 compares Bernier's results with 
our predictions. Again, the predictions are in remarkable agreement with the data. 

Mercadier (1981) measured wave velocity using the cross-correlation function. The 
experiments cover a comparable range of liquid and gas superficial velocities. Void fraction 
wave velocities lie in between the gas and liquid velocities as predicted by the model. 
Mercadier's data is compared with the predictions of our model in figure 9. 

Micaelli (1982) considers bubbly flow regimes with high liquid velocity and smaller 
bubble radius (0.5-2.5 mm). In this region, the relative velocity is small and the liquid 
velocity is sometimes greater than the gas velocity due to distribution effects. As shown in 
figure 10, Micaelli's data is well predicted. However, the good fit between Micaelli's data 
and our model may not assess its validity since the relative velocity between the gas and 
liquid is much smaller than for Bernier's or our data. 

4 CONCLUSIONS 

The form of the forces on spheres m an mviscid flow with no circulation has been 
derived, assuming no interaction between the spheres. The expression is very similar to that 
of Nlgmatulin (1979) except that an additional term related to the spatial gradient of the 
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Ftgure 7 Void wave velo~ty as a funcUon of cta for a given superhetal velocity in our 
experiments Each point represents a different liquid superfi¢aal velocity. 
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Figure 8 V m d  wave ve lmty  as a function of a o  for different values of the liquid superfimal 
velocity from Bernier (1981) .  

phase volume fraction arises. This term is crucial in the analysis of void propagation in 
bubbly flows. 

Based on the reasonable assumption that viscous effects enter the momentum equations 
primarily through algebraic terms, the characteristics for void propagation have been de- 
termined. For theoretical values of the coefficients for the forces in inviscid flow, assuming 
no interaction between spheres, it is found that the characteristics are wholly real for 
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Ftgure 9 J *  a s  a function of a ¢  for different values of the liquid superficial velooty from 
Mercadier (1981) .  
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F, gure 10. Comparison of model with IVfieadh's data. The numbers indicate the value of the 
liqmd superficaal velocity Void wave velocity is plotted as a function of a c. 

a c  < 0.26. This result is independent of flow rates and physical properties but reqmres 

Pc < < PL. 
The predictions have been compared with our own data and that obtained in other 

laboratories. The agreement is excellent and enhances confidence in the proposed model. 

Acknowledgment - -We wish to gratefully acknowledge support of this work by the National Science 
Foundation under Grant CPE-81-12667 

REFERENCES 

AGEE, L. J., BANERJEE, S., DUFFEY, R. B. & HUGHES, E. D. 1978 Some aspects of two 
fluid models and their numerical solutions. Second OECD Specialists' Meeting on Transient 
Two-Phase Flow 1, 27-58.  

BANERJEE, S. & CHAN, A. M. C. 1980 Separated flow model, I - - ana lys i s  of the averaged 
and local instantaneous formulations, lnt. J. Multiphase Flow 6, 1-24. 

BASSET A. B., 1961 A Treatise on Hydrodynamics. Dover, New York. 
BERNIER, R. N. J. 1981 Unsteady two-phase flow instrumentation and measurement, Report  

No. E200.4, Division of Enganeering and Applied Science, California Institute of Tech- 
nology. 

BOURE, J. A. 1975 On a Unified Presentation of the Non-equilibrium Two-phase Flow Models 
in Non-equilibrium Two.phase Flows (Edited by R. T. Lahey, Jr. and G. B. Wallis), ASME 
Symposium Volume. ASME, New York 

CHAN, A. M. C. & BANERJEE, S. 1981 Design aspects of gamma densitometer for votd 
fraction measurement in small-scale two-phase flows. Nucl. lnstrum. Meth. 190, 135- 
168. 

DELHAYE, J. M. & ACHARD, J. L 1978 On the averaging operators introduced in two- 
phase flow modeling, Proc. CSN1 Speciahsts' Meeting in Transient Two-Phase Flow, To- 



INTERPHASE MOMENTUM INTERACTION EFFECTS 573 

ronto, Aug. 3-4, 1976 (Edited by S. Banerjee and K. R. Weaver), Vol. 1, pp. 5-84. 
AECL, Canada. 

DREW, D. A. 1983 Mathematical modelling of two-phase flow models and their applicability 
to nuclear reactor transient analysis, EPRI Report NP143, Vol. 1,2,3. 

DREW, D. A. & LAHEY, R. T. JR., 1979 Application of general constitutive principles to 
the derivation of multidimensional two-phase flow equations. Int. J. Multiphase Flow 5, 
243-264. 

DREW, D. A., CHENG, L. & LAHEY, R. T., JR 1979 Analysis of virtual mass effects in 
two-phase flow. Int. J. Multiphase Flow 5,233-242. 

HEIDRICK, T. R., BANER3EE, S. • AZAD, R. S. 1977 Experiments on the structure of 
turbulence in fully developed pipe flow: Interpretation of the measurements by a wave 
model, o r . Fluid Mech. 81, 137-154. 

HUGHES, E. D., LYCKOWSKI, R. W., MCFADDEN & NIEDERAUER, G. F. 1976 An 
evaluation of state-of-the-art two-velocity two-phase flow models and their applicability 
to nuclear reactor transient analysis, EPRI Report NP143, Vol. 1,2,3. 

ISHII, M. 1975 Thermo-fluid Dynamic Theory of  Two-phase Flow. Eyrolles, Pads. 
LAHEY, R. T., JR., CHENG, L., DREW, D. & FLAHERTY, J. 1980 The effect of virtual 

mass on the numerical stability of accelerating two-phase flow. Int. J.. Multiphase Flow 
6,281-294.  

LYCZKOWSKI, R. W. 1978 Theoretical bases of the drift flux field equations and vapor 
drift velocity, in Proc. 6th Int. Heat Transfer Conf., Vol. 1, pp. 339-344. Hemisphere 
Press, Washington. 

MERCADIER, Y. 1981 Contribution ~ l'&ude des propagations de perturbations de taux de 
vides dans les ecoulements diphasiques eau air ~ bulle, Th~se, Universit~ Seientiflque et 
Medicale et Institut National Polytechnique de Grenoble. 

MICAELLI, J. C. 1982 Propagation d'ondes darts les ecoulements diphasiques fi bulles 
deux constituants--Etude theorique et experimentale, These de Docteur es Sciences, 
Institut National Polytechnique de Grenoble. 

MILNE-THOMPSON L. M. 1968 Theoretical Hydrodynamics, 5th Ed. Macmillan, New York. 
NIGMATULIN, R. I. 1978 Averaging in mathematical modeling of heterogeneous and dis- 

persed mixtures, Paper presented at International Center for Heat and Mass Transfer 
Symposium, Yugoslavia. 

NIGMATULIN, R. I. 1979 Spatial averaging in the mechanics of heterogeneous and dispersed 
systems. Int. J. Multiphase Flow 5, 353-385. 

OLSEN, H. O. 1967 Theoretical and experimental investigation of impedance void meters, 
Institutt for Atomenergi, Kjeller Research Establishment, Kjeller, Norway. 

ORBECK, I. 1962 Impedance void meter, Institutt for Atomenergi, Kjeller Research estab- 
lishment, Kjeller, Norway. 

PANTON, R. J. 1978 Flow properties for the continuum viewpoint of a nonequilibrium gas 
particle mixture. Z Fluid Mech. 31, 273-303. 

RAMSHAW, J. D. & TRAPP, J. A. 1978 Characteristics, stability, and short wavelength 
phenomena in two-phase flow equation systems. Nucl. Sc~ Eng. 66, 93-102. 

STUHMILLER, J. H. 1977 The influence of interfacial pressure forces on the character of 
two-phase flow model equations. Int. J. Multiphase Flow 3, 551-560. 

VERNIER, P. & DELHAYE, J. M. 1968 General two-phase flow equation applied to the 
thermo-hydrodynamics of boiling water nuclear reactors. Energie Primaire 4(1-2), 5-46. 

VOINOV, O. V. 1973 On force acting on a sphere in a non-uniform flow of ideal incompressible 
fluid. Zh. Prikl. Mekh. Tekhn. Fiz. 4, 182-184. 

YADIGAROGLU, G. & LAHEY, R. T. 1976 On the various forms of the conservation 
equations in two-phase flow. Int. J. Multiphase Flow 2,477-494.  

YAKIMOV, Y. L. 1971 Forces acting on a small sphere in an arbitrary potential flow of an 
ideal incompressible fluid. Nanchn. Tr. In-ta Mekhan. MGU, No. 9 Institute of Me- 
chanics, Moscow State University, Moscow. 


